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Simple Summary: Usually, spectral data are used as predictors to predict milk components, animal
characteristics, and even reproductive status. Another innovative way to use spectral data involves
considering spectral wavenumbers as traits and then analyzing from the genetic perspective. In this
study, we considered milk spectral data directly as traits, then detected the influence of some
non-genetic factors on spectral wavenumbers and estimated the genetic parameters of spectral points.
The result of the present study could be used as a management tool for dairy farm and also provides
a further understanding of genetic background of milk mid-infrared (MIR) spectra. In future, milk
spectral data could be applied more effective. For example, some sub-clinical diseases might be
detected based on the difference between the expected and observed values of the spectral traits.
In addition, we could also use genetic correlation between wavenumbers and a trait of interest, which
are difficult and expensive to measure, to apply for the genetic improvement of dairy species.

Abstract: Milk composition always serves as an indicator for the cow’s health status and body
condition. Some non-genetic factors such as parity, days in milk (DIM), and calving season, which
obviously affect milk performance, therefore, need to be considered in dairy farm management.
However, only a few milk compositions are used in the current animal selection programs.
The mid-infrared (MIR) spectroscopy can reflect the global composition of milk, but this information
is currently underused. The objectives of this study were to detect the effect of some non-genetic
factors on milk production traits as well as 1060 individual spectral points covering from 925.92 cm−1

to 5011.54 cm−1, estimate heritabilities of milk production traits and MIR spectral wavenumbers,
and explore the genetic correlations between milk production traits and 1060 individual spectral
points in a Chinese Holstein population. The mixed models procedure of SAS software was used
to test the non-genetic factors. Single-trait animal models were used to estimate heritabilities and
bivariate animal models were used to estimate genetic correlations using the package of ASReml in R
software. The results showed that herd, parity, calving season, and lactation stage had significant
effects on the percentages of protein and lactose, whereas herd and lactation stage had significant
effects on fat percentage. Moreover, the herd showed a significant effect on all of the 1060 individual
wavenumbers, whereas lactation stage, parity, and calving season had significant effect on most
of the wavenumbers of the lactose-region (925 cm−1 to 1200 cm−1), protein-region (1240 cm−1 to
1600 cm−1), and fat-regions (1680 cm−1 to 1770 cm−1 and 2800 cm−1 to 3015 cm−1). The estimated
heritabilities for protein percentage (PP), fat percentage (FP), and lactose percentage (LP) were 0.08,
0.05, and 0.09, respectively. Further, the milk spectrum was heritable but low for most individual
points. Heritabilities of 1060 individual spectral points were 0.04 on average, ranging from 0 to 0.11.
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In particular, heritabilities for wavenumbers of spectral regions related to water absorption were
very low and even null, and heritabilities for wavenumbers of specific MIR regions associated with
fat-I, fat-II, protein, and lactose were 0.04, 0.06, 0.05, and 0.06 on average, respectively. The genetic
correlations between PP and FP, PP and LP, FP, and LP were 0.78, −0.29, and −0.14, respectively.
In addition, PP, FP, and LP shared the similar patterns of genetic correlations with the spectral
wavenumbers. The genetic correlations between milk production traits and spectral regions related
to important milk components varied from weak to very strong (0.01 to 0.94, and −0.01 to −0.96).
The current study could be used as a management tool for dairy farms and also provides a further
understanding of the genetic background of milk MIR spectra.

Keywords: mid-infrared spectra; milk production traits; spectral wavenumbers; heritability;
genetic correlation

1. Introduction

It is known that milk composition changes when a cow has a metabolic disorder such as acidosis,
ketosis, or mastitis. Therefore, milk composition always serves as an indicator for the cow’s health
status and body condition. In order to better manage dairy farm and enhance productivity of cows, it is
substantial to develop an understanding of the factors affecting milk performance. Some non-genetic
factors such as parity, days in milk (DIM), and calving season, which obviously affect milk performance,
therefore, need to be considered for sustaining breed improvement.

It is also known that milk is a very complex product consisting of many components. However,
only a few milk components (for example, fat, protein, and lactose percentages) are included in the
current animal selection programs. The reasons for this are that analytical methods such as gas
chromatography or HPLC to quantify milk components are expensive and time-consuming, and these
methods are less suitable for large-scale routine measurement in the dairy farm. Mid-infrared (MIR)
spectroscopy is a widely used spectroscopic technique based on crossing matter by electromagnetic
radiation and on the subsequent measure of energy absorption in the mid-infrared region [1,2]. As a
rapid, accurate, and cheap technique, MIR spectroscopy has been implemented as an effective tool in
the prediction of milk phenotypes [1], such as the contents of protein [3], fat [4], fatty acids [5], and
major minerals [6]. The spectral data can reflect the global composition of milk, but this information
is currently underused. Therefore, it could be interesting to study directly the spectral information
for management and breeding. A study on the non-genetic factors affecting milk spectral data is
therefore justifiable.

It is demonstrated that milk spectra also have the potential to predict animal characteristics, such
as methane emissions [7], energy balance [8], and feed intake [9]. Attempts have been also made to
assess the reproductive status of dairy cows, such as oestrus [10,11] and pregnancy stage [12,13] from
milk spectra. Milk spectra are used as predictors to predict milk phenotypes, animal characteristics,
and even reproductive status as mentioned above. Other innovative ways to use spectral data also
exist, that is, milk spectral data is considered as traits and then be analyzed by genetic models [12].
Actually, genetic analyses of milk spectra have been revealed by several previous studies [14–17],
represented by various heritabilities ranging from low to high. However, a knowledge gap still exists
regarding the genetic basis of milk spectra. The genetic correlations of milk spectral data to traits of
interesting have not been reported before.

Therefore, the specific aims of the present study were to (1) estimate the effects of non-genetic
factors on milk production traits and 1060 individual spectral points covering MIR region from
925.92 cm−1 to 5011.54 cm−1, (2) calculate heritabilities (h2) of milk production traits and spectral
points, and (3) calculate genetic correlations between milk production traits and spectral points.
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2. Materials and Methods

2.1. Original Data

Original data were provided by the Henan Dairy Herd Improvement Center. The original data
including information on cow parity, calving date, days in milk (DIM), milk production traits such as
protein percentage (PP), fat percentage (FP) and lactose percentage (LP) predicted by mid-infrared (MIR)
spectroscopy, and spectral data were collected from August to October 2018 in 41 herds and included
a total number of 9954 records from 8694 cows. The contents of milk protein, fat, lactose, as well as
spectral information containing 1060 infrared transmittance points in the region between 925.92 cm−1

to 5011.54 cm−1 were determined by CombiFoss FT+ (Foss, Hillerød, Denmark). In addition, there
were 9516 animals including 8206 females and 1310 males in the original pedigree file. Each animal
was traced back as many generations as possible.

2.2. Data Editing

The outliers of the milk production traits including the contents of milk protein, fat, and lactose
were defined as samples whose values deviating more than 3 standard deviations from the mean of
the corresponding trait. Based on this definition, the numbers of observations available for PP were
9893 from 8645 cows, for FP were 9871 from 8626 cows, and for LP were 9804 from 8592 cows.

Spectral points expressed in transmittance (T) were transformed to absorbance (A) with the
equation A = log10(1/T). Principal component analysis carrying out on the edited spectral data showed
that the first 9 principal components explained more than 90% of total spectral variation. Therefore,
robust Mahalanobis distance was performed from the first 9 principal component scores to detect
spectral outliers, and removal of spectral outliers was based on 97.5% quantile of the chi-squared
distribution with 9 degrees of freedom. Finally, 9322 spectral records from 8200 cows were retained.

A new data set was then used for genetic correlations analyses between milk production traits
and 1060 individual spectral points. This new data set consisting of 9292 records from 8175 cows was
obtained through removal both the outliers of milk production traits and spectral outliers from the
original data set.

2.3. Models for Estimates of Non-Genetic Factors

The mixed models procedure of SAS software was used to test the effects of non-genetic factors.
Calving season, parity, lactation stage, and herd on PP, FP, LP, and 1060 individual spectral points were
tested. In this study, calving seasons were classified into 4 groups based on climatic conditions of
the area, including March to May as spring, June to August as summer, September to November as
autumn, and December to February as winter. Parities of cows were grouped into 3 levels, namely,
1st, 2nd, and ≥3rd. Lactation stages were divided into 5 levels, including 1–50 days, 51–100 days,
101–200 days, 201–305 days, and >305 days. Therefore, the model was: Yijklm = µ + Si + Pj + Lk + Hl +

cowm + eijklm, where Yijklm was the response variable; µ was overall mean for each trait; Si was the
fixed effect of calving season (i = 1, 2, 3, 4); Pj was the fixed effect of parity (j = 1, 2, 3); Lk was the fixed
effect of lactation stage (k = 1, 2, 3, 4, 5); Hl was the fixed effect of herd (l = 1, 2, 3, . . . , 41); cowm was
the random effect of cows accounting for the repeated measurements; and eijklm was the random error.
Bonfferoni correction was used to adjust for multiple testing of the differences between effect levels,
and p < 0.05 was considered significant.

2.4. Models for Genetic Analyses

Heritabilities of milk production traits and spectral points were estimated using single-trait animal
model REML method by the package of ASReml in the R software. The model was: y = Xb + Z1a +

Z2p+e, where y was a vector of observations; b was a vector of fixed effects; a was a vector of random
animal additive effects; p was a vector of random permanent environmental effects; e was a vector
of random residual effects; X, Z1 and Z2 were incidence matrixes assigning observations to effects.
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Genetic correlations between milk production traits and spectral points were estimated using the
bivariate animal models also by the package of ASReml in the R software. Only significant (p < 0.05)
effects of fixed factors on milk production traits and 1060 individual spectral points were used in the
genetic analyses. In addition, the pedigree data consisted of 9468 animals including 8161 females
and 1307 males in the final data set of PP; 9450 animals including 8143 females and 1307 males for
FP; 9414 animals including 8113 females and 1301 males for LP; 9038 animals including 7758 females
and 1280 males for spectral data; and 9015 animals including 7736 females and 1279 males for genetic
correlations analyses between milk production traits and 1060 individual spectral points.

3. Results and Discussion

3.1. Descriptive Statistics

The descriptive statistics of three milk production traits were presented in Table 1. Similar to
data reported by Coffey et al. [18] and Mele et al. [19], the average of PP, FP, and LP was 3.45%, 4.19%,
and 4.91%, with coefficients of variation of 0.13, 0.27, and 0.05, respectively (Table 1).

Table 1. Descriptive statistics of milk production traits.

Traits Records Mean SD CV Minimum Maximum

PP 9893 3.45 0.44 0.13 2.06 4.92
FP 9871 4.19 1.13 0.27 0.70 7.84
LP 9804 4.91 0.26 0.05 3.94 5.62

PP = protein percentage (%); FP = fat percentage (%); LP = lactose percentage (%).

3.2. Estimates of Fixed Effects on Milk Production Traits

All fixed factors including herd, parity, calving season, and lactation stage had significant effects
on PP and LP, whereas only herd and lactation stage had significant effects on FP. The estimates of
parity, calving season, and lactation stage effects on milk production traits are shown as follows.

3.2.1. Parity

The estimates of parity effect on milk production traits were presented in Figure 1. Our results
revealed that the parity had a significant (p < 0.05) effect on PP. The PP was significantly greater
in the second parity (3.41%) than in the first (3.37%) and the third parity (3.38%) (Figure 1A).
Bovenhuis et al. [20] reported that protein percent increased from parity 1 to 2, and was slightly lower
in parity 3 as compared with parity 2. Zhao et al. [21] also observed the highest protein content in
the second parity. These results were in accordance with the present study. The effect of parity on fat
percentage was negligible. The FP in the first and second parities was slightly higher than that in the
third parity (Figure 1B). Zhao et al. [21] observed that fat content in parity 2 was slightly higher than
that in parity 1 and 3. The LP significantly decreased with increasing parity, declining, on average,
by 0.13% from parity 1 to parity 3 (Figure 1C). Bovenhuis et al. [20] reported that lactose percentage
decreased from parity 1 to 2 and, subsequently, to parity 3, which was in line with the results of
the present study. The same decreased tendency of lactose content with increasing parity was also
observed by Haile-Mariam et al. [22].
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Figure 1. Estimates of the parity effects on milk production traits, including (A) protein percentage, 
(B) fat percentage, and (C) lactose percentage. 
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The effect of calving season on milk production traits were presented in Table 2. The results 
showed that calving season had a significant (p < 0.05) effect on PP and LP. The highest PP was 
observed in the winter (3.43%) and the least PP was observed in summer (3.34%). The low milk 
protein percentage of cows calving in summer can be explained mainly with the depression effect of 
high temperatures. In addition, as is well known that the phenotypic correlation between PP and LP 
is always negative [23]. Therefore, it was reasonable that the lactose percentage was the highest in 
summer (4.95%) and the lowest in the winter (4.92%), which was on the contrary of PP. There was 
no significant difference of fat content among different calving seasons, which was in agreement 
with Verma et al. [24], who also reported that there was no significant effect of calving season on 
milk fat percentage, which was the result from a small population (259 Sahiwal cattle with 600 
records).  

Table 2. Estimates of the calving season effects on milk production traits. 
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Autumn 2405 3.41 ± 0.01 a,b 2404 4.04 ± 0.03 a 2375 4.93 ± 0.01 b 
Winter 3261 3.43 ± 0.01 a 3260 4.06 ± 0.03 a 3234 4.92 ± 0.01 b 

PP = protein percentage (%); FP = fat percentage (%); LP = lactose percentage (%). a–c within a row, 
means sharing different superscripts differ significantly (p < 0.05). 

3.2.3. Lactation Stage  

The estimates of the different lactation stages on milk production traits were shown in Table 3. 
Lactation stage showed significant (p < 0.05) effect on PP, FP and LP. Both PP and FP were the 
highest in the fifth milking stage (3.68% and 4.28%) and the lowest in the second lactation stage 
(3.17% and 3.77%). Results for the effect of lactation stage on protein and fat percentages in the 
current study were in agreement with findings of Bovenhuis et al. [20] and Weller et al. [25], who 
observed that, during the entire lactation stage, protein and fat contents decreased from the 
beginning of the lactation to about 50 DIM, and then increased until the ending of the lactation. On 
the contrary, LP was the highest in the second milking stage (5.01%) and the lowest in the fifth 
lactation stage (4.83%), which was supported by Bovenhuis et al. [20], who described the increase of 
lactose percentage from 0 DIM to 50 DIM, and subsequently, the decrease from 50 DIM to 390 DIM.  

Figure 1. Estimates of the parity effects on milk production traits, including (A) protein percentage,
(B) fat percentage, and (C) lactose percentage.

3.2.2. Calving Season

The effect of calving season on milk production traits were presented in Table 2. The results
showed that calving season had a significant (p < 0.05) effect on PP and LP. The highest PP was
observed in the winter (3.43%) and the least PP was observed in summer (3.34%). The low milk
protein percentage of cows calving in summer can be explained mainly with the depression effect of
high temperatures. In addition, as is well known that the phenotypic correlation between PP and LP
is always negative [23]. Therefore, it was reasonable that the lactose percentage was the highest in
summer (4.95%) and the lowest in the winter (4.92%), which was on the contrary of PP. There was no
significant difference of fat content among different calving seasons, which was in agreement with
Verma et al. [24], who also reported that there was no significant effect of calving season on milk fat
percentage, which was the result from a small population (259 Sahiwal cattle with 600 records).

Table 2. Estimates of the calving season effects on milk production traits.

Season of Calving
PP FP LP

n Mean ± SE n Mean ± SE n Mean ± SE

Spring 2029 3.37 ± 0.01 b,c 2024 3.97 ± 0.03 a 2017 4.93 ± 0.01 a,b

Summer 2198 3.34 ± 0.01 c 2183 4.01 ± 0.03 a 2178 4.95 ± 0.01 a

Autumn 2405 3.41 ± 0.01 a,b 2404 4.04 ± 0.03 a 2375 4.93 ± 0.01 b

Winter 3261 3.43 ± 0.01 a 3260 4.06 ± 0.03 a 3234 4.92 ± 0.01 b

PP = protein percentage (%); FP = fat percentage (%); LP = lactose percentage (%). a–c within a row, means sharing
different superscripts differ significantly (p < 0.05).

3.2.3. Lactation Stage

The estimates of the different lactation stages on milk production traits were shown in Table 3.
Lactation stage showed significant (p < 0.05) effect on PP, FP and LP. Both PP and FP were the highest
in the fifth milking stage (3.68% and 4.28%) and the lowest in the second lactation stage (3.17% and
3.77%). Results for the effect of lactation stage on protein and fat percentages in the current study were
in agreement with findings of Bovenhuis et al. [20] and Weller et al. [25], who observed that, during the
entire lactation stage, protein and fat contents decreased from the beginning of the lactation to about
50 DIM, and then increased until the ending of the lactation. On the contrary, LP was the highest in the
second milking stage (5.01%) and the lowest in the fifth lactation stage (4.83%), which was supported
by Bovenhuis et al. [20], who described the increase of lactose percentage from 0 DIM to 50 DIM, and
subsequently, the decrease from 50 DIM to 390 DIM.
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Table 3. Estimates of the lactation stage effects on milk production traits.

Lactation Stage
PP FP LP

n Mean ± SE n Mean ± SE n Mean ± SE

1–50 days 1204 3.20 ± 0.01 d 1194 4.06 ± 0.04 b 1203 4.96 ± 0.01 b

51–100 days 1018 3.17 ± 0.02 d 1010 3.77 ± 0.04 d 1012 5.01 ± 0.01 a

101–200 days 1613 3.36 ± 0.01 c 1608 3.88 ± 0.03 c 1606 4.96 ± 0.01 b

201–305 days 3500 3.52 ± 0.01 b 3487 4.11 ± 0.03 b 3473 4.90 ± 0.01 c

>305 days 2558 3.68 ± 0.01 a 2572 4.28 ± 0.03 a 2510 4.83 ± 0.01 d

PP = protein percentage (%); FP = fat percentage (%); LP = lactose percentage (%). a–d within a row, means sharing
different superscripts differ significantly (p < 0.05).

3.3. Estimates of Fixed Effects on Milk Infrared Spectra

Herd showed a significant effect on all of the 1060 individual wavenumbers, including
wavenumbers of the water absorption regions (1600 cm−1 to 1700 cm−1, and 3040 cm−1 to 3660 cm−1),
which might reflect feeding and management differences between farms. Nowadays, consumers have
increasing interest in purchasing organic milk. The authenticity of milk get more and more noticed.
Therefore, infrared spectroscopy could be one of the methods that enable discriminate whether milk
produced by cows from organic farms or not. Lactation stage had significant effect on all of the
wavenumbers of the lactose-region (925 cm−1 to 1200 cm−1), protein-region (1240 cm−1 to 1600 cm−1),
and fat-regions (1680 cm−1 to 1770 cm−1 and 2800 cm−1 to 3015 cm−1), while most of the wavenumbers
of these specific regions related to important milk components were significantly affected by parity
and calving season. It is well known that milk components are influenced by non-genetic factors such
as parity, lactation stage, and calving season, which is also demonstrated in the present manuscript.
Therefore, the effects of these fixed factors on milk components are reflected in the forms of the milk
infrared wavenumbers in the current study. Further, most of the wavenumbers of the water absorption
regions (1600 cm−1 to 1700 cm−1, and 3040 cm−1 to 3660 cm−1) were not significantly affected by parity,
calving season, and lactation stage. However, there were a few wavenumbers of the water absorption
regions that were significantly affected by these fixed factors. For instance, wavenumbers 3040 cm−1

to 3090 cm−1 were significantly affected by both parity and lactation stage, whereas wavenumbers
3553 cm−1 to 3657 cm−1 were significantly affected by lactation stage. The wavenumbers of the water
absorption region are usually excluded when setting up prediction models. Our results indicate that
the wavenumbers of water absorption regions that were significantly affected by these fixed factors
may contain some important information on milk components.

3.4. Heritability

The estimated heritabilities of PP, FP, and LP were 0.08, 0.05, and 0.09, respectively. Actually,
heritabilities of PP, FP, and LP were various among different previous studies, ranging from low
to high. Fleming et al. [26] calculated that the h2 for PP and FP were 0.52 and 0.51, respectively.
Buitenhuis et al. [27] presented the h2 for PP was 0.47 in Holstein cows and 0.70 in Jersey cattle,
respectively. Costa et al. [28] reported that heritability of LP was 0.43. The estimated h2 of PP, FP,
and LP in the present study were much lower compared with the above previous studies but similar to
Zhang et al. [29], who estimated that the heritabilities of PP and FP were 0.08 and 0.07, respectively.
The discrepancies across studies regarding the heritabilities for milk production traits could be due
to several factors, such as differences in total records, number of records of per animal, data editing,
breeds, the statistical model, and the method of calculating heritability. For example, Fleming et al. [26]
estimated the genetic parameters using multiple-trait random regression test-day models by Bayesian
methods based on 49,127 test-day milk samples from 10,029 first parity Holstein cows in 810 herds,
while in the current study, we calculated heritability using single-trait animal model based on only
9322 records from 8200 Chinese Holstein cows instead of only a single test-day record of per cow.
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Further, the very short period (only three months) of data collection and the very limited pedigree
used may be another reason for low heritabilities of milk production traits in the present study.

Figure 2 presented heritabilities for 1060 individual wavenumbers of the spectral region from
925.92 cm−1 to 5011.54 cm−1. Heritabilities of the 1060 wavenumbers were 0.04 on average, ranging
from 0 to 0.11. In total, 167 spectral points yielded heritability estimates that were lower than 0.01
and even null, which were corresponding to two high noise level spectral regions related to water
absorption (1600 cm−1 to 1700 cm−1, and 3040 cm−1 to 3660 cm−1). Three hundred and ninety-five
spectral points exhibited heritability estimates between 0.01 and 0.04, whereas 328 and 132 spectral
points had heritability in the intervals of 0.04 to 0.07 and 0.07 to 0.10, respectively, and 38 spectral
points had heritability greater than 0.1 (Table 4). In addition, the estimated average heritabilities for
wavenumbers of the specific regions including lactose- region (925 cm−1 to 1200 cm−1), protein-region
(1240 cm−1 to 1600 cm−1), and fat-regions (1680 cm−1 to 1770 cm−1 and 2800 cm−1 to 3015 cm−1)
were 0.06, 0.05, 0.04, and 0.06, respectively (Table 5). The heritability estimation of milk spectra
has been revealed by several previous studies. Bittante and Cecchinato [15] indicated that the milk
spectrum was heritable for most individual wavenumbers. Heritabilities for wavenumbers of milk
spectra ranged from 0.003 to 0.42 in Holstein cows [14], from 0 to 0.63 in Holstein Friesian cows [16],
from 0 to 0.31 in Danish Holstein, and from 0 to 0.3 in Danish Jersey [17]. Previous studies [15,17]
and the present study showed the similar pattern of heritabilities for the different wavenumbers.
The heritabilities for wavenumbers of the two regions related to water absorption was null or very low.
Meanwhile, most of the comparatively high-heritability wavenumbers were associated with important
milk components. However, similar to the milk production traits, h2 of individual wavenumbers in the
current study was also considerably lower comparing with the previous studies. Besides the reasons
mentioned above, the possible reasons also include different breeds, sample size and instruments used.
For example, Zaalberg et al. [17] estimated heritabilities for milk infrared wavenumbers that were from
3275 Danish Holstein cows with 19,656 records and from 3408 Danish Jersey cows with 20,228 records,
comparing with this study which was from 8200 Chinese Holstein cows with only 9322 records. Further,
Bittante and Cecchinato [15] estimated heritabilities for milk spectrum using the MilkoScan FT120 FTIR
interferometer containing 1056 spectral points, comparing with the present study based on CombiFoss
FT+ containing 1060 spectral points. However, the most likely reasons are the analytical method and
statistical models applied. For instance, estimation of h2 by Zaalberg et al. [17] followed a Bayesian
approach. In the study of Soyeurt et al. [14], authors first used principal components analysis to reduce
the dimensionality of the spectra, and estimated variances on the transformed scales were then back
transformed towards the original 1060 spectral traits using a 2-step approach. Variance components
for the spectral points were estimated by a single-trait REML animal model in the studies of Bittante
and Cecchinato [15], Wang et al. [16] as well as the present study. However, comparing with the study
of Bittante and Cecchinato [15], the lower heritability in the present study may be that, besides fixed
factors of herd, DIM, and parity, random effect of animal additive genetic effect, we considered the
calving season as a fixed factor, and added permanent environmental effect in the statistical models.
In addition, the classification of the same fixed factors, including herd and DIM had a little difference
between these two studies, representing by 30 herds vs. 41 herds and 10 levels of days in milk vs. five
levels of lactation stage.



Animals 2020, 10, 139 8 of 12
Animals 2020, 10, x FOR PEER REVIEW 8 of 12 

 
Figure 2. Heritabilities (h2) for 1060 individual spectral points of infrared region from 925.92 cm−1 to 
5011.54 cm−1. 

Table 4. Estimates of heritabilities (h2) for 1060 spectral points, according to the value of heritability. 

h2 Spectral Points Number 
Heritability 

Average SD Minimum Maximum 
<0.01 167 0.00046 0.0015 0 0.009 

0.01–0.04 395 0.026 0.0045 0.01 0.04 
0.04–0.07 328 0.055 0.0073 0.04 0.07 
0.07–0.1 132 0.083 0.0084 0.07 0.1 

>0.1 38 0.107 0.0037 0.1 0.11 
All 1060 0.041 0.029 0 0.11 

Table 5. Estimates of heritabilities (h2) for 1060 spectral points, according to MIR regions. 

MIR Region Heritability 
Name Range (cm−1) Average SD Minimum Maximum 

Lactose 925–1200 0.06 0.01 0.04 0.08 
Protein 1240–1600 0.05 0.02 0.03 0.09 

Fat-I 1680–1770 0.04 0.01 0.02 0.06 
Fat-II 2800–3015 0.06 0.02 0.04 0.10 
Total 925–5011 0.04 0.03 0.00 0.11 

3.5. Genetic Correlation  

The genetic correlation between PP and FP was 0.78 in this study. Fleming et al. [26] also 
detected a strong genetic correlation between PP and FP (0.72), which was in line with the present 
study. Further, the genetic correlations between PP and LP, FP and LP were −0.29 and −0.14, 
respectively, which was similar to Senddon et al. [30], who reported that the genetic correlations of 
LP with PP and LP were −0.14 and −0.05, respectively.  

In this study, we also demonstrated the genetic correlations between milk production traits and 
the spectral wavenumbers. As shown in Figure 3, PP, FP, and LP shared the similar patterns of 
genetic correlation with the spectral wavenumbers.  
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5011.54 cm−1.

Table 4. Estimates of heritabilities (h2) for 1060 spectral points, according to the value of heritability.

h2 Spectral Points Number
Heritability

Average SD Minimum Maximum

<0.01 167 0.00046 0.0015 0 0.009
0.01–0.04 395 0.026 0.0045 0.01 0.04
0.04–0.07 328 0.055 0.0073 0.04 0.07
0.07–0.1 132 0.083 0.0084 0.07 0.1

>0.1 38 0.107 0.0037 0.1 0.11
All 1060 0.041 0.029 0 0.11

Table 5. Estimates of heritabilities (h2) for 1060 spectral points, according to MIR regions.

MIR Region Heritability

Name Range (cm−1) Average SD Minimum Maximum

Lactose 925–1200 0.06 0.01 0.04 0.08
Protein 1240–1600 0.05 0.02 0.03 0.09

Fat-I 1680–1770 0.04 0.01 0.02 0.06
Fat-II 2800–3015 0.06 0.02 0.04 0.10
Total 925–5011 0.04 0.03 0.00 0.11

3.5. Genetic Correlation

The genetic correlation between PP and FP was 0.78 in this study. Fleming et al. [26] also detected
a strong genetic correlation between PP and FP (0.72), which was in line with the present study. Further,
the genetic correlations between PP and LP, FP and LP were −0.29 and −0.14, respectively, which was
similar to Senddon et al. [30], who reported that the genetic correlations of LP with PP and LP were
−0.14 and −0.05, respectively.

In this study, we also demonstrated the genetic correlations between milk production traits and
the spectral wavenumbers. As shown in Figure 3, PP, FP, and LP shared the similar patterns of genetic
correlation with the spectral wavenumbers.
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from 925.92 cm−1 to 5011.542 cm−1.

Within the lactose-region (925 cm−1 to 1200 cm−1), wavenumbers 1180 cm−1 and 925 cm−1 showed
the strongest positive (rg = 0.78) and negative (rg = −0.85) genetic correlation with fat percentage, and
the average positive and negative genetic correlation between spectral points from the lactose-region
and fat percentage was 0.43 and −0.60, respectively. Wavenumbers 1199 cm−1 and 929 cm−1 showed the
highest positive (rg = 0.71) and negative (rg =−0.70) genetic correlation with protein percentage, and the
average positive and negative genetic correlation between spectral points from the lactose-region
and protein percentage was 0.40 and −0.43, respectively. Almost all of the spectral points within the
lactose-region were positively correlated with lactose percentage, and the average positive genetic
correlation was 0.44. Further, wavenumber 1026 cm−1 had the highest positive genetic correlation
(rg = 0.73) with lactose percentage (Table 6).

Table 6. Overview of genetic correlations between milk production traits and MIR regions.

Traits MIR Regions (cm−1)
Negative Correlation Positive Correlation

Average SD Min Max Average SD Min Max

PP

925–1200 (lactose-region) −0.43 0.24 −0.02 −0.70 0.40 0.22 0.01 0.71
1240–1600 (protein-region) −0.22 0.14 −0.06 −0.42 0.47 0.32 0.01 0.94

1680–1770 (fat-region) −0.57 0.23 −0.10 −0.96 0.50 0.09 0.32 0.57
2800–3015 (fat-region) −0.42 0.12 −0.17 −0.53 0.62 0.15 0.11 0.80

FP

925–1200 (lactose-region) −0.60 0.28 −0.02 −0.85 0.43 0.28 0.02 0.78
1240–1600 (protein-region) −0.28 0.25 −0.02 −0.71 0.32 0.22 0.02 0.76

1680–1770 (fat-region) −0.67 0.21 −0.07 −0.88 0.74 0.04 0.63 0.78
2800–3015 (fat-region) −0.54 0.19 −0.11 −0.69 0.65 0.22 0.10 0.80

LP

925–1200 (lactose-region) −0.01 0 −0.01 −0.02 0.44 0.23 0.01 0.73
1240–1600 (protein-region) −0.17 0.09 −0.03 −0.26 0.44 0.21 0.01 0.70

1680–1770 (fat-region) −0.06 0.05 −0.01 −0.15 0.13 0.27 0.01 0.67
2800–3015 (fat-region) / / / / 0.21 0.12 0.06 0.47

PP = protein percentage (%); FP = fat percentage (%); LP = lactose percentage (%).

Within the protein-region (1240 cm−1 to 1600 cm−1), wavenumbers 1242 cm−1 and 1597 cm−1

showed the highest positive (0.76) and negative (−0.71) correlations with fat percentage, and the
average positive and negative genetic correlation between wavenumbers of protein-region and fat
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percentage were 0.32 and −0.28, respectively. Most of the spectral points within the protein-region were
positively correlated with protein percentage, and the average positive genetic correlation between
spectral points within the protein-region and protein percentage was 0.47. Further, wavenumber
1539 cm−1 had the highest positive genetic correlation (rg = 0.94) with protein percentage. The negative
genetic correlation between spectral points within the protein-region and lactose percentage was low
and even negligible. Wavenumber 1539 cm−1 has the highest positive genetic correlation (rg = 0.70)
with LP, and the average positive genetic correlation between spectral points within the protein-region
and lactose percentage was 0.44 (Table 6).

Within the first fat-region (1680 cm−1 to 1770 cm−1), wavenumbers 1736 cm−1, 1743 cm−1, and
1724 cm−1 showed the highest positive correlations with FP, PP, and LP (rg = 0.78, 0.57, and 0.67,
respectively). The average positive correlations between spectral points within the first fat-region
and FP, PP, and FP were 0.74, 0.50, and 0.13, respectively. Meanwhile, wavenumbers 1720 cm−1,
1724 cm−1, and 1682 cm−1 had the highest negative correlations with FP, PP, and LP (rg = −0.88, −0.96,
and −0.15, respectively). The average negative correlation between spectral points within the first
fat-region and FP, PP, and LP were −0.67, −0.57, and −0.06, respectively. Within the second fat-region
(2800 cm−1 to 3015 cm−1), all spectral points showed the positive genetic correlation with lactose
percentage. Wavenumber 2827 cm−1 had the highest correlation (rg = 0.47) with LP, and the average rg

between wavenumbers within the second fat-region and lactose percentage was 0.21. Wavenumbers
2947 cm−1 (rg = 0.80) and 2966 cm−1 (rg = 0.80) had the highest positive genetic correlation with FP
and PP, respectively. The average positive rg between wavenumbers within the second fat-region
and FP and PP were 0.65 and 0.62, respectively. Wavenumbers 3013 cm−1 had the highest negative
genetic correlation with both FP (rg = −0.69) and PP (rg = −0.53). The average negative rg between
wavenumbers within the second fat-region and FP and PP were −0.54 and −0.42, respectively.

4. Conclusions

The present study shows that non-genetic factors such as herd, parity, calving season, and lactation
stage have significant effects on milk protein and lactose percentages, whereas herd and lactation stage
have significant effects on milk fat percentage. Furthermore, herd shows significant effect on all of the
1060 individual wavenumbers, while lactation stage has significant effect on all of the wavenumbers of
the lactose-region (925 cm−1 to 1200 cm−1), protein-region (1240 cm−1 to 1600 cm−1), and fat-regions
(1680 cm−1 to 1770 cm−1 and 2800 cm−1 to 3015 cm−1), and most of the wavenumbers of these specific
regions related to important milk components are significantly affected by parity and calving season.
In addition, we confirms that heritabilities for wavemunbers of spectral regions related to water
absorption are very low or even null, and the percentages of milk fat, protein, and lactose, as well as
most of the spectral wavenumbers associated with important milk components are heritable but low.
The percentages of milk protein, fat, and lactose share the similar patterns of genetic correlation with
the spectral wavenumbers. The current study can be used as a management tool for dairy farms and
also provides a further understanding of genetic background of milk MIR spectra.
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